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ABSTRACT

No one likes to see a scattering

cross-section curve that is too smooth;

it is much more interesting to find

bumps and wiggles and most interesting

if it is possible to understand their

cause. Several types of resonances have

been clearly established in positron-

containing systems: those lying just

below a degenerate threshold I (like 2s-

2p in hydrogenic atoms or ions) and

those representing Coulomb bound states

in a re-arranged channel 2 (like Ps + H =

e++H'.) Recently, two new sorts of

resonances have been reported for which

the resonant mechanism is not clear.

The first 3 is a very low-lying resonance

in the e-Ps system (obtained by an

adiabatic expansion method), and the

second 4 is a similarly low-lying two-

channel resonance in the e+-H system

(obtained by a close-coupling

technique.) These developments

encouraged us to examine such systems

using the standard methods of

stabilization and complex rotation.

Most of our results are negative;'we do

not verify the low-lying resonances in

either system. Some indication of new

resonances in the e+-He + system is

found; this may be caused by the
attraction between Ps in the n=2 state

and the He ++ nucleus.

METHOD

The Hamiltonian for the three-body

systems of interest is the following
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where the three particles are indicated

in an obvious way by subscripts. We

then proceed to obtain approximate

eigenvalues of this Hamiltonian by the

usual variational technique, using a

standard Hylleraas type of trial
function.

If we were looking for bound states

this would be the end of the story. We

are, however, interested here in

resonances; this changes the situation

considerably. There are two ways to use

the variational method in a search for

resonances, and we use both. These are

the stabilization and complex rotation

methods. The first of these is the

simpler one, and it is usual to apply it

first; if an indication of possible

resonant structure is found the second

may then be applied.
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Figure i

In the stabilization method one

proceeds just as if one were looking for

bound states but tries to find energy

levels that are not very sensitive to

the number of terms retained in the

Hylleraas expansion. If there is a

resonance at an energy where only a

single channel is open, then a good

indication would be an avoided crossing

of two energy levels. A stabilized or
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slowly decreasing eigenvalue would be

successively passed by rapidly

decreasing energy levels. This is

illustrated in Fig.l, which is the case

of electron-positronium S-wave

scattering in the electronic singlet

state (mi=l , ZI2=I, ZI3=Z23=-I.) The

clear avoided crossings just below the

n=2 level of Ps at E=-0.125 Ry is the
first of an infinite series of Feshbach

resonances that are well understood to

be due to the degeneracy of that level.
In Ref.3 the existence of a resonance

just above the elastic threshold is

suggested; there is clearly no support

for this in the present work.

N

Figure 2

In Fig.2 we show the same sort of

diagram for the case of S-wave positron-

hydrogen scattering (ml=m2=l , m3== ,

ZI2=Z23=-I, ZI3=I.) Again it is clear

that there is a stabilized eigenvalue

just below the n=2 threshold in hydrogen

corresponding to the first of an
infinite series of Feshbach resonances 5

produced by the degeneracy of the n=2

levels. Although this resonance lies in

a region where two channels are open

(e+-H and Ps-H +) there is no possibility

of confusing the stabilized energy with

an open threshold. Notice, however,
that there is an indication of a second

resonance just above the Ps threshold at

E=-0.5 Rydberg. Is it possible that

this corresponds to one of the

resonances reported in Ref.4?

Experience has taught us that it is most

likely for an apparently stabilized

energy lying above an open threshold to

represent an ordinary elastic scattering

state predominantly involving that

particular channel; this is especially

likely when there is no apparent

mechanism for forming a resonance at

that energy. (In this case only a shape

resonance would be possible, and for S-

wave scattering it is hard to see where

an effective barrier in the potential

could originate.) To be more certain of

the situation we turn to the complex
rotation method.

This method is based on carrying out
the dilatation transformation

i8

r.l _ rie

which is equivalent to multiplying the

potential energy part of Eq.l by e "i8

and the kinetic energy part by e -2i8.

This analytically continued Hamiltonian

is then diagonalized as before to obtain

complex eigenenergies, since we use real

basis functions the expansion

coefficients must now be complex. If

these energies are now plotted on the

complex energy plane, they should behave

as follows. True bound states are

represented by points on the real axis,

and ordinary scattering states are

points that lie (in principle) along

"rotated cuts" beginning at each target

threshold on the real axis and making an

angle -28 with that axis. Most

importantly, points representing

resonances, usually hidden on the second

Riemann sheet, are revealed by the

transformation; they should be

independent of the angle 8 and are

complex. It is clear that true

resonances should be well differentiated

from ordinary scattering states, but in

practice this requires quite large basis
sets.

In Fig.3 we show the energy plane

for the e+-H system discussed above
where 8=10.3 ° and N=I61. The cuts

(rotated through an angle -28)
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corresponding to the first two

thresholds in H and the ground state of

Ps have been plotted, and one can see

the points that approximately lie along

them; the higher cuts are better

represented in this case because of our

particular choice of non-linear

parameters in the trial function. There

is no clear sign of an isolated point

above the Ps threshold that might be a

resonance although Doolen's resonance 5

is visible Just below the n=2 threshold.

Probably the "stabilized" energy that

appeared in Fig.2 is in reality one of

the points lying on the Ps cut; such

points slide down the cut as N is

increased but slow down as they approach
the threshold. This is the reason for

doubting the reality of apparent

resonances lying close above a target
threshold.

-0.I

-0,2

-O,J

-08 _O.6 -O.4 -0,2

Re[Energy)

Figure 3

We made one final attempt to find

simple new resonances by examining the
e+-He +

system. Although the same

degeneracies exist as in the e+-H case,

the repulsive Coulomb force is so

dominant for large separations that the

Feshbach resonances below target atom

thresholds are unlikely to appear. But

such resonances are probable below the

degenerate thresholds in the Ps-He ++

channel; because of the increased

charge these should be lower lying than

in the Ps-H + case. So far, we have

found indications of two such resonances

at E=-.73 and E=-.39 Ry. These lie very

far below their apparent "parent"

threshold at E=-.125 Ry; the first is

below the Ps ground state but above the

two lowest states of He + . Our next

attack on this problem will involve the

Feshbach projection operator technique 6
which should be definitive.
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